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Macau Tutorial

In these examples we use ChEMBL dataset for compound-proteins activities (IC50). The IC50 values and ECFP fingerprints can be downloaded from these two urls:

wget http://homes.esat.kuleuven.be/~jsimm/chembl-IC50-346targets.mm
wget http://homes.esat.kuleuven.be/~jsimm/chembl-IC50-compound-feat.mm






Matrix Factorization Model

The matrix factorization models cell Y[i,j] by the inner product of the latents


\[Y_{ij} \sim \mathcal{N}(\mathbf{u}_i ^ \top \mathbf{v}_j + mean, \alpha^{-1})\]

where \(\mathbf{u}_i\) and \(\mathbf{v}_j\) are the latent vector for i-th row and j-th column, and \(\alpha\) is the precision of the observation noise.
The model also uses a fixed global mean for the whole matrix.




Matrix Factorization with Side Information

In this example we use MCMC (Gibbs) sampling to perform factorization of the compound x protein IC50 matrix by using ECFP features as side information on the compounds.

import macau
import scipy.io

## loading data
ic50 = scipy.io.mmread("chembl-IC50-346targets.mm")
ecfp = scipy.io.mmread("chembl-IC50-compound-feat.mm")

## running factorization (Macau)
result = macau.macau(Y = ic50,
                     Ytest      = 0.2,
                     side       = [ecfp, None],
                     num_latent = 32,
                     precision  = 5.0,
                     burnin     = 400,
                     nsamples   = 1600)





Input matrix for Y is a sparse scipy matrix (either coo_matrix, csr_matrix or csc_matrix).

In this example, we have assigned 20% of the IC50 data to the test set by setting Ytest = 0.2.
If you want to use a predefined test data, set Ytest = my_test_matrix, where the matrix is a sparse matrix of the same size as Y.
Here we have used burn-in of 400 samples for the Gibbs sampler and then collected 1600 samples from the model.
This is usually sufficient. For quick runs smaller numbers can be used, like burnin = 100, nsamples = 500.

The parameter side = [ecfp, None] sets the side information for rows and columns, respectively.
In this example we only use side information for the compounds (rows of the matrix).

The precision = 5.0 specifies the precision of the IC50 observations, i.e., 1 / variance.

When the run has completed you can check the result object and its prediction field, which is a Pandas DataFrame.

>>> result
Matrix factorization results
Test RMSE:        0.6393
Matrix size:      [15073 x 346]
Number of train:  47424
Number of test:   11856
To see predictions on test set see '.prediction' field.

>>> result.prediction
        col   row    y     y_pred      y_pred_std
0        0   2233  5.7721  5.750984    1.177526
1        0   2354  5.0947  5.379610    0.857858
...






Univariate sampler

Macau also includes an option to use a very fast univariate sampler, i.e., instead of sampling blocks of variables jointly it samples each individually.
An example:

import macau
import scipy.io

## loading data
ic50 = scipy.io.mmread("chembl-IC50-346targets.mm")
ecfp = scipy.io.mmread("chembl-IC50-compound-feat.mm")

## running factorization (Macau)
result = macau.macau(Y = ic50,
                     Ytest      = 0.2,
                     side       = [ecfp, None],
                     num_latent = 32,
                     precision  = 5.0,
                     univariate = True,
                     burnin     = 500,
                     nsamples   = 3500)





When using it we recommend using larger values for burnin and nsamples, because the univariate sampler mixes slower than the blocked sampler.




Adaptive noise

In the previous examples we fixed the observation noise by specifying precision = 5.0.
Instead we can also allow the model to automatically determine the precision of the noise by setting precision = “adaptive”.

import macau
import scipy.io

## loading data
ic50 = scipy.io.mmread("chembl-IC50-346targets.mm")
ecfp = scipy.io.mmread("chembl-IC50-compound-feat.mm")

## running factorization (Macau)
result = macau.macau(Y = ic50,
                     Ytest      = 0.2,
                     side       = [ecfp, None],
                     num_latent = 32,
                     precision  = "adaptive",
                     univariate = True,
                     burnin     = 500,
                     nsamples   = 3500)





In the case of adaptive noise the model updates (samples) the precision parameter in every iteration, which is then also shown in the output.
Additionally, there is a parameter sn_max that sets the maximum allowed signal-to-noise ratio.
This means that if the updated precision would imply a higher signal-to-noise ratio than sn_max, then the precision value is set to (sn_max + 1.0) / Yvar where Yvar is the variance of the training dataset Y.




Binary matrices

Macau can also factorize binary matrices (with or without side information). As an input the sparse matrix should only contain values of 0 or 1.
To factorize them we employ probit noise model that can be enabled by precision = “probit”.

Care has to be taken to make input to the model, as operating with sparse matrices can drop real 0 measurements. In the below example, we first copy the matrix (line 9) and then threshold the data to binary (line 10).

Currently, the probit model only works with the multivariate sampler (univariate = False).

import macau
import scipy.io

## loading data
ic50 = scipy.io.mmread("chembl-IC50-346targets.mm")
ecfp = scipy.io.mmread("chembl-IC50-compound-feat.mm")

## using activity threshold pIC50 > 6.5
act = ic50
act.data = act.data > 6.5

## running factorization (Macau)
result = macau.macau(Y = act,
                     Ytest      = 0.2,
                     side       = [ecfp, None],
                     num_latent = 32,
                     precision  = "probit",
                     univariate = False,
                     burnin     = 400,
                     nsamples   = 1600)










Matrix Factorization without Side Information

To run matrix factorization without side information you can just drop the side parameter.

result = macau.macau(Y = ic50,
                     Ytest      = 0.2,
                     num_latent = 32,
                     precision  = 5.0,
                     burnin     = 200,
                     nsamples   = 800)





Without side information Macau is equivalent to standard Bayesian Matrix Factorization (BPMF).
However, if available using side information can significantly improve the model accuracy.
In the case of IC50 data the accuracy improves from RMSE of 0.90 to close to 0.60.




Tensor Factorization

Macau also supports tensor factorization with and without side information on any of the modes.
Tensor can be thought as generalization of matrix to relations with more than two items.
For example 3-tensor of drug x cell x gene could express the effect of a drug on the given cell and gene.
In this case the prediction for the element Yhat[i,j,k] is given by


\[\hat{Y}_{ijk} = \sum_{d=1}^D u^{(1)}_{d,i} u^{(2)}_{d,j} u^{(3)}_{d,k} + mean\]

Visually the model can be represented as follows:


[image: Tensor model]
Tensor model predicts Yhat[i,j,k] by multiplying all latent vectors together element-wise and then taking the sum along the latent dimension (figure omits the global mean).



For tensors Macau packages uses Pandas DataFrame where each row stores the coordinate and the value of a known
cell in the tensor.
Specifically, the integer columns in the DataFrame give the coordinate of the cell and float (or double) column
stores the value in the cell (the order of the columns does not matter).
The coordinates are 0-based.

Here is a simple toy example with factorizing a 3-tensor with side information on the first mode.

import numpy as np
import pandas as pd
import scipy.sparse
import macau
import itertools

## generating toy data
A = np.random.randn(15, 2)
B = np.random.randn(3, 2)
C = np.random.randn(2, 2)

idx = list( itertools.product(np.arange(A.shape[0]),
                              np.arange(B.shape[0]),
                              np.arange(C.shape[0])) )
df  = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"])
df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ])

## side information is again a sparse matrix
Acoo = scipy.sparse.coo_matrix(A)

## assigning 20% of the cells to test set
Ytrain, Ytest = macau.make_train_test_df(df, 0.2)

## for artificial dataset using small values for burnin, nsamples and num_latents is fine
results = macau.macau(Y = Ytrain, Ytest = Ytest, side=[Acoo, None, None], num_latent = 4,
                      verbose = True, burnin = 20, nsamples = 20,
                      univariate = False, precision = 50)





The side informatoin added here is very informative, thus, using it will significantly increase
the accuracy. The factorization can be executed also without the side information by removing
side=[Acoo, None, None]:

## tensor factorization without side information
results = macau.macau(Y = Ytrain, Ytest = Ytest, num_latent = 4,
                      verbose = True, burnin = 20, nsamples = 20,
                      univariate = False, precision = 50)





Tensor factorization also supports the univariate sampler. To execute that set univariate = True, for example

results = macau.macau(Y = Ytrain, Ytest = Ytest, side=[Acoo, None, None], num_latent = 4,
                      verbose = True, burnin = 20, nsamples = 20,
                      univariate = True, precision = 50)











          

      

      

    

  

    
      
          
            
  
Saving models

To save samples of the Macau model you can add save_prefix = “mymodel” when calling macau.
This option will store all samples of the latent vectors, their mean vectors and link matrices to the disk.
Additionally, the global mean-value that Macau adds to all predictions is also stored.


Example

import macau
import scipy.io

## loading data
ic50 = scipy.io.mmread("chembl-IC50-346targets.mm")
ecfp = scipy.io.mmread("chembl-IC50-compound-feat.mm")

## running factorization (Macau)
result = macau.macau(Y = ic50,
                     Ytest      = 0.2,
                     side       = [ecfp, None],
                     num_latent = 32,
                     precision  = 5.0,
                     burnin     = 100,
                     nsamples   = 500,
                     save_prefix = "chembl19")








Saved files

The saved files for sample N for the rows are


	Latent vectors chembl19-sampleN-U1-latents.csv.


	Latent means: chembl19-sampleN-U1-latentmeans.csv.


	Link matrix (beta): chembl19-sampleN-U1-link.csv.


	Global mean value: chembl19-meanvalue.csv (same for all samples).




Equivalent files for the column latents are stored in U2 files.




Using the saved model to make predictions

These files can be loaded with numpy and used to make predictions.

import numpy as np

## global mean value (common for all samples)
meanvalue = np.loadtxt("chembl19-meanvalue.csv").tolist()

## loading sample 1
N = 1
U = np.loadtxt("chembl19-sample%d-U1-latents.csv" % N, delimiter=",")
V = np.loadtxt("chembl19-sample%d-U2-latents.csv" % N, delimiter=",")

## predicting Y[0, 7] from sample 1
Yhat_07 = U[:,0].dot(V[:,7]) + meanvalue

## predict the whole matrix from sample 1
Yhat = U.transpose().dot(V) + meanvalue





Note that in Macau the final prediction is the average of the predictions from all samples.
This can be accomplished by looping over all of the samples and averaging the predictions.


Using the saved model to predict new rows (compounds)

Here we show an example how to make a new prediction for a compound (row) that was not in the dataset, by using its side information and saved link matrices.

import numpy as np
import scipy.io

## loading side info for arbitrary compound (can be outside of the training set)
xnew = scipy.io.mmread("chembl-IC50-compound-feat.mm").tocsr()[17,:]

## loading sample 1
meanvalue = np.loadtxt("chembl19-meanvalue.csv").tolist()
N = 1
lmean = np.loadtxt("chembl19-sample%d-U1-latentmean.csv" % N, delimiter=",")
link  = np.loadtxt("chembl19-sample%d-U1-link.csv" % N,       delimiter=",")
V     = np.loadtxt("chembl19-sample%d-U2-latents.csv" % N,    delimiter=",")

## predicted latent vector for xnew from sample 1
uhat = xnew.dot(link.transpose()) + lmean

## use predicted latent vector to predict activities across columns
Yhat = uhat.dot(V) + meanvalue





Again, to make good predictions you would have to change the example to loop over all of the samples (and compute the mean of Yhat’s).




Tensor models

As in the matrix case the tensor factorization can be saved using save_prefix argument
and later loaded from disk to make predictions.
To make predictions we recall that the value of a tensor model is given by a tensor contraction of all latent matrices. Specifically, the prediction for the element Yhat[i,j,k] of a rank-3 tensor is given by


\[\hat{Y}_{ijk} = \sum_{d=1}^D u^{(1)}_{d,i} u^{(2)}_{d,j} u^{(3)}_{d,k} + mean\]

Next we show how to compute this prediction using numpy.
Assuming we have run and saved a model named save_prefix = “mytensor” of tensor of rank 3
we can load the latent matrices and make predictions using np.einsum function.

import numpy as np

## global mean value (common for all samples)
meanvalue = np.loadtxt("mytensor-meanvalue.csv").tolist()

## loading latent matrices for sample 1
N = 1
U1 = np.loadtxt("mytensor-sample%d-U1-latents.csv" % N, delimiter=",")
U2 = np.loadtxt("mytensor-sample%d-U2-latents.csv" % N, delimiter=",")
U3 = np.loadtxt("mytensor-sample%d-U3-latents.csv" % N, delimiter=",")

## predicting Y[7, 0, 1] from sample 1
Yhat_701 = sum(U1[:,7] * U2[:,0] * U3[:,1]) + meanvalue

## predict the whole tensor from sample 1, using np.einsum
Yhat = np.einsum(U1, [0, 1], U2, [0, 2], U3, [0, 3]) + meanvalue





As before this is a prediction from a single sample. For better predictions we should loop over all of the samples
and average their predictions (their Yhat’s).

It is also possible to predict only slices of the full tensors using np.einsum:

## predict the slice Y[7, :, :] from sample 1
Yhat_7xx = np.einsum(U1[:,7], [0], U2, [0, 2], U3, [0, 3]) + meanvalue

## predict the slice Y[:, 0, :] from sample 1
Yhat_x0x = np.einsum(U1, [0, 1], U2[:,0], [0], U3, [0, 3]) + meanvalue

## predict the slice Y[:, :, 1] from sample 1
Yhat_xx1 = np.einsum(U1, [0, 1], U2, [0, 2], U3[:,1], [0]) + meanvalue





All 3 examples above give a matrix (rank-2 tensor) as a result.
To get the prediction for a slice we replaced the full latent matrix (U1) with a single specific latent vector (U1[:,7]) and changed its indexing from [0, 1] to [0] as the indexing now over a vector.
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